linearized system meaning in English
线性化系统
Examples
- Cauchy problem for linearized system of two - dimensional isentropic flow with axisymmetrical initial data in gas dynamics
二维等熵流的线性化方程的具轴对称初值的柯西问题 - In this method , the feedback linearization method is used to convert the nonlinear system into the linearized system , for which the tracking controller is designed , by this way , the nonlinear chaotic system can be forced to track variable reference input
在该方法中,首先采用反馈线性化方法将非线性系统转化为线性系统,再针对反馈线性化后的线性系统设计轨迹跟踪控制器,实现被控对象对于连续变化给定信号的跟踪控制。 - Two illustrative examples , a duffing oscillator subject to a harmonic parametric control and a driven murali - lakshmanan - chua ( mlc ) circuit imposed with a weak harmonic control , are presented here to show that the random phase plays a decisive role for control function . the method for computing the top lyapunov exponent is based on khasminskii ' s formulation for linearized systems . then , the obtained results are further verified by the poincare map analysis on dynamical behavior of the system , such as stability , bifurcation and chaos
通过两个实例,即一类参激激励作用下的duffing系统和一类murali - lakshmanan - chua ( mlc )电路,考察随机相位在非反馈混沌控制中的影响与作用,利用最大lyapunov指数和poincare截面分析法证实了随机相位确实可以用来调节系统的混沌行为,即一个小的随机相位的扰动可能导致系统从有序转变为无序,也可能使得系统从无序转变为有序。 - Third , controlling chaos in the chaotic n - scroll chua ' s circuit is studied . the approach taken is to use feedback of a single state variable in a simple pd ( proportional and differential ) format . first , the unstable fixed points in the n - scroll chua ' s circuit are classified into two different types according to the characteristics of the eigenvalues of the linearized system matrix at the fixed points
第三,研究了多涡卷chua电路中不动点处jacobian矩阵特征根的性质,并据此将不动点分成两类,应用变量的比例微分反馈法分别对这两类不动点的可控性进行了研究,研究发现该法只能实现第一类不动点及其相应子空间的混沌控制,而不能完成第二类不动点的混沌控制,并给出了数值模拟结果,理论分析和数值模拟证实了该方法的有效性。 - The main contributions of this dissertation are summarized as follows : for the exponential stability of neural networks , many existing results are related to local exponential stability . since the local exponential stability of a nonlinear system is equivalent to that of its linearized system , it can be easily obtained
目前许多文献中有关指数稳定性的研究都是针对局部指数稳定性展开的,由于非线性系统的局部指数稳定性可以通过其相应的线性化系统得到,因此比较容易分析,而全局指数稳定性则不然。